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ocalized surface plasmons are charge

oscillations that can be excited opti-

cally on the surfaces of metallic nano-
particles. When the nanoparticles are in
close proximity, there is an interaction be-
tween the localized surface plasmons that is
mediated by their electric fields, resulting
in a Coulomb-like coupling between them.
The spatial variation of the electric field
gives rise to a spatial dependence of the
interaction, leading to optical resonances
that depend on the distance between the
nanoparticles. This effect has been used to
create a plasmonic ruler.'~* When the metal
nanoparticles are combined with molecular
systems, the plasmonic interaction and the
subsequent change in the optical spectrum
yields information about the separation of
the molecules or the components of large
polymer chains. Recently, this idea was ex-
tended to three dimensions® using a more
complex nanoparticle structure that is sen-
sitive to both separation and translation.
This three-dimensional plasmonic ruler ex-
ploits the presence of two subradiative
plasmonic resonances excited by near-field
coupling to a plasmonic dipole antenna.
The nonradiative resonances are formed
by the interaction between pairs of metal
nanorods that lead to a quadrupole reso-
nance with low scattering.® Energy from the
dipole antenna couples into the quadrupole
mode, which results in a drop in the overall
scattered intensity and an increase in the
transmittance, an effect which is known
as plasmon-induced transparency.”” "> When
two such subradiative structures are formed,
it has been shown that the location of the
centrally placed excitation dipole controls
the intensity and frequency of features in
the scattering spectrum. In this way, the
plasmonic structure behaves like a ruler
providing a measure of the displacement
of the central antenna. The potential appli-
cations of this structure are in biology and
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ABSTRACT

An electrostatic eigenmode method that describes the coupling between plasmonic
nanoparticles is used to model the optical resonances of the 3D plasmonic ruler. The model
provides a mathematical description of the ruler that enables us to identify the key resonance
in the scattering spectrum that encodes the location of the central nanorod. The model
demonstrates excellent agreement with experimentally measured spectra. We show that the
spectra can uniquely encode the horizontal and vertical displacements of the central nanorod.
From an understanding of the spatial dependence of the plasmonic coupling between the
nanorods, we devise a method for estimating the position of the central nanorod and apply
this to experimental data. Our method paves the way toward the use of high-resolution
spectra from 3D plasmonic oligomers for structural analysis of single entities such as complex
macromolecules, DNA scaffolds, proteins, and peptides.

KEYWORDS: plasmon ruler - nanoparticle coupling -
localized surface plasmons - induced transparency - optical antenna

complex macromolecular processes where
the conformation of the molecules and their
variation with time are important.
There are several important issues relat-
ing to the use of the three-dimensional
plasmonic ruler. The first issue concerns
the ability of the ruler to uniquely encode
both the horizontal (S) and vertical (H) dis- ~ *Address correspondence to
placements of the central nanorod. That is, Ydavisecsiro.au.
for these two parameters to be extracted  Received for review October 19, 2011
from the optical spectrum, they must af-  and accepted January 6, 2012.
fect the spectral features in different and . .
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separable ways. Second, for the three-  191021/nn204029p
dimensional plasmonic ruler to be useful,
we require some method of calibration, soO  ©2012 American Chemical Society
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that the displacements are known either in absolute
units (such as nanometers) or as relative displace-
ments. In this paper, we use a mathematical approach
to analyze the scattering spectra from the three-
dimensional plasmonic ruler and show that both
issues, that of uniqueness and calibration, can be
satisfied. We use an electrostatic method to model
the coupling of the localized surface plasmons in the
nanorods and derive the relationships between the
Coulomb coupling coefficients and the resonant fre-
quencies of the modes in the structure. This allows us
to identify the resonance of the central nanorod as the
key feature in the optical spectrum that encodes the
horizontal and vertical displacement which separately
affect the frequency of the resonance and its strength.
We show that it is possible to design the ruler so that
linear combinations of the coupling coefficients de-
pend only on one or the other of the displacements,
thereby allowing these parameters to be calculated
from measurements of the optical spectrum. More-
over, we derive an approximate relationship linking the
coupling coefficients to the displacements of the
central nanorod, and we use this relation to estimate
the vertical and horizontal position of the nanorod
from the measured transmission spectra. The change
in the position of the central nanorod is known in
absolute units if its initial position is known, which
provides one method for calibrating the ruler.

RESULTS AND DISCUSSION

The configuration of the plasmonic ruler that we
consider is shown in Figure 1. It consists of two pairs
of parallel nanorods that are each associated with a
nonradiative quadrupole moment. The fifth nanorod
acts like an antenna in which a dipole mode is excited
by the incident light polarized parallel to its long axis.
This central dipole antenna scatters the incident light
but is also coupled to the two quadrupole structures
that absorb energy from it. The interaction leads to the
change in the scattering spectrum and is responsible
for the induced transparency. Displacements S and H
of the antenna alter the relative strengths of the coup-
ling, causing changes in the scattering spectrum. The
first question we wish to answer is: can the spectrum
uniquely encode S and H separately? For our analysis, we
make a number of simplifying assumptions. For the
situation where the structure is very much smaller than
the wavelength of light, we assume that retardation is not
dominant and use an electrostatic method which allows
us to develop a mathematical model of the ruler.'*'® This
method has been shown previously to reproduce the
features of induced transparency and Fano resonances.'

In the electrostatic eigenmode model, the interac-
tion between nanoparticles is described in terms of the
Coulomb forces associated with the surface charges.
These electric charges represent the localized surface
plasmon (LSP) modes in the nanoparticles. The spatial
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Figure 1. Three-dimensional plasmonic ruler consists of
two pairs of metal nanorods (upper and lower) and a central
dipole antenna. The antenna excites subradiative quadru-
pole modes in the two pairs of nanorods. The scattering
spectrum changes with the lateral S and vertical H displace-
ments of the antenna. The optical excitation has the electric
field aligned with the central nanorod and it is incident from
above.

dependence of the Coulomb coupling between the
different elements of the ruler is described by a geometric
coupling coefficient G that represents the interaction
between pairs of nanorods. It depends on the nanorod
separation. It has been shown' that, to lowest order, the
geometric coupling G,, between nanoparticles r and q
has the form of an electric dipole—dipole coupling

Grgocd(3(p, - d)(pg-d) — (p,*P ;) (1)
where p ,is the dipole moment of the resonant mode of
particle r, d,q is the distance between the two particles,
and d is a unit vector pointing from particle r to g. From
this equation, we see that the geometric coupling is
symmetric, G,, = Gg,, and has a sign that depends on the
relative orientation of the dipole moments and the
displacement of the nanoparticles. It is this geometric
dependence of the coupling that is exploited in the
plasmon ruler. A schematic representation of the cou-
pling is shown in Figure 2 where eq 1 is used to
determine the signs of the coefficients. Here we assume
that the direct coupling between the upper quadrupole
and the lower quadrupole is negligible. Since these struc-
tures are fixed with respect to one another, any coupling
between them will mainly induce a fixed shift in their
resonances which does not affect the operation of the
ruler. This point is explained more extensively below. Note
that it is possible that many resonant modes are being
excited in each nanoparticle. However, for simplicity, we
have assumed that only one of these modes is dominant.

A light field of frequency w applied to an isolated
nanoparticle r will excite a localized surface plasmon
resonance with an amplitude a,(w). However, the
Coulomb coupling from nearby nanoparticles changes
the excitation amplitude, now represented by a,/(w).
The electrostatic coupling model provides a simple
way of representing the excitations in a coupled sys-
tem of plasmonic nanoparticles in terms of the optical
excitation of each nanoparticle when isolated. The in-
teractions are obtained from a matrix equation linking
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Figure 2. Schematic diagram of the coupling between the
different nanorods. The arrows reference the positive direc-
tion of the dipole moments in each nanorod. The signs of
the geometric coupling coefficients G vary depending on
whether the dipole moments couple head-to-tail or head-
to-head/tail-to-tail.

the coupled amplitudes a, to the uncoupled ampli-
tudes a,. The matrix depends on the coupling coeffi-
cients G4 thatinclude the geometric coupling G,;and a
term that depends on the resonant frequency w, of the
LSP mode of particle r. If we include a complex Drude
damping term /2, then we can write the coupling
coefficients in the form C,; = —G,o/(0 — o, + iT/2).
With this in mind, we have the following relations:
Ca1=—Ca2 Ca3=—Cas Cra= —Coq G3a= — G40, G2 =G5y,
and Gz, = C43. The matrix equation describing the
coupling in the ruler then has the form

-1

&a 1 _Ccﬂ Ca1 _Ca3 CaS da
&1 —Cia 1 —Cyp 0 0 ay
&2 = C]a —C12 1 0 0 :2
as ~Ga O 0 1T Gy a
as Gq 0 0 —C34 1

(2)

To solve this equation, we invert the matrix and multiply
the result into the column vector on the right. This
vector contains the amplitudes of the nanoparticles
when they are not coupled. Since the applied electric
field is polarized parallel to the center dipole antenna,
none of the other nanoparticles will be excited directly,
so that a; = a, = a3 = a; = 0. The excitation of
the antenna a, when isolated is given by a, = —A./
(w — wg + iT/2), which depends on its resonance
frequency w, and a constant A,. Solving eq 2 yields
the excitation amplitude of the antenna when coupled
to the other nanorods. This has the form a, = AJ/A,
where

A= 2G, N 2G2,
(0 —wg+iT'/2) (0 —wq+iT/2)
—(w —wga+iT)/2) (3)

Here, wg = w;+ G;and wq, = w, + G, are the resonance
frequencies of the quadrupoles formed by the lower
and upper pairs of nanorods, respectively. We have

DAVIS ET AL.

assumed that the rods all have the same damping factor
I'. The scattering spectrum is proportional to |d,|*> = AY/
|A], and the transmission spectrum is approximately
Imax — AZ/|A]%. We have fitted this expression for the
transmission to the published data of Liu et al.> These
data consist of experimentally measured spectra from a
set of rulers with different lateral displacements S of the
central nanorod. However, in the absence of experi-
mental spectra for vertical displacements H, we also fit
our model to the numerical simulations of Liu et al
These spectra are shown in Figure 3 along with the fits of
our analytical model. (The important fitted parameters
are given in Table 1 and Table 2.) The analytical model
fits very well the experimental spectra for different
offsets S of the antenna. However, for the numerical
data, the fits are best for the antenna displaced between
H=—10nm and H =5 nm and show reduced accuracy
for larger displacements. This may be due to the
interaction between higher-order resonant modes
that are taken into account in the numerical model
but have been neglected in our analysis. Evidence for
this is seen in the relatively straight slope of the
transmission spectrum between the two main reso-
nances when the displacement of the antenna is
large. This is particularly obvious for H= 15 nm where
the central resonance is a relatively small feature. In
contrast, our analytical model produces large smooth
curves that are not able to reproduce this feature.
This impacts our ability to recover the position of
the antenna over a large vertical displacement, as
discussed below.

Since the scattering spectrum is proportional to
|do> = A2/|A]%, the scattering is a minimum (trans-
mission is a maximum) when either w = wg or w =
wqu Which corresponds to the resonances of the lower
and upper quadrupoles. This can be seen from eq 3 by
ignoring the losses, I' = 0, for then A is infinite at the
resonances and therefore d, = A,/A = 0. These minima,
which are associated with the plasmon-induced trans-
parent maxima, depend on the coupling within the
nanoparticle pairs, through coefficients G, and G, but
do not depend on the position of the dipole antenna
except for a partial overlap of the resonances due to
their finite width. In this regard, these minima are not
ideal reference points for monitoring the position of
the center dipole, as was suggested by Liu et al.’

On the contrary, the frequencies of the scattering
resonances or transmission minima, and particularly
the center resonance, depend on the coupling be-
tween the antenna and the quadrupoles. It is the
position dependence of this coupling that encodes
the location of the antenna in the scattering spectrum.
These resonances occur when |A[? is small. If we treat
the resonance frequencies as complex numbers, such
that @y = wg — T/2 and similarly for @q, and @,
then the resonances occur when A = 0. This leads to a
cubic equation with three solutions corresponding to
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Figure 3. Comparisons between the spectra associated with the plasmonic ruler and the analytical expression for the
scattering for different positions of the central dipole antenna: (a) experimental data from Liu et al.> and our analytical model
fitted to the data for different lateral translations S of the antenna; (b) numerical data and fits of our analytical model for
different vertical displacements H of the antenna. In all cases, the transmittance data have been fitted to /., — A,Z,/|A|2, where
Imax as well as A, Gojy Gayy Wgi Wqu Wa and I' were adjustable parameters. The arrows show the frequency of the central
resonance that encodes the location of the dipole antenna. The transmittance spectra have been offset for clarity.

TABLE 1. Fit Parameters for Figure 3a,”

S (nm) Gy Ggy Wg [oN Wqu T
0 228 36.8 1151 1129 1076 105
15 21.7 39.1 mn 133 1074 99
20 331 443 1178 135 1073 9
25 38.6 458 1183 1140 1071 96
30 464 50.9 1191 1148 1069 101
40 53.7 555 1194 1146 1063 102

“ Except for the displacement S, all parameters are in THz. The upper nanorod pair
is offset in S by 35 nm, and the central rod is placed midway between both
nanorod pairs, at a vertical distance of 70 nm measured between the centers of the
nanorods.

the three main scattering resonances in this system.
The solution of the cubic equation is rather compli-
cated, but we can derive an approximate solution for
the center resonance. Since this resonance is close to
that of the antenna resonance, we consider the devia-
tion dw = w — @,. The first order expression for dw
depends on frequency differences, such as @, — @, =
wqu — ®q Which are real quantities, because the
imaginary terms cancel. Therefore, we find that the
frequency of the center resonance wg depends on the
coupling coefficients approximately as

2G2 (g — wa) — 2G%(wq — Wqu)
(wg — wa)wa — wqu) + 2(G§, +G2,)

WR & g + (4)
Here we assume that the lower quadrupole resonance
is at a higher frequency than the center dipole, so that
wq — wq > 0, and that the upper quadrupole has a
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TABLE 2. Fit Parameters for Figure 3b,”

H (nm) Gy Ggy Wqr Wq Waqu T
—20 74.1 56.4 122 1029 979 133
—15 69.9 533 1134 1049 983 123
—10 65.7 55.8 143 1060 988 120

-5 62.5 60.2 1148 1064 991 121
0 60.5 65.3 151 1065 992 126

5 59.8 71.0 151 1061 989 132
10 60.2 76.8 1146 1052 982 141
15 62.3 82.1 1136 1038 969 150
20 67.1 88.0 mo9 1016 946 158

“ Except for the displacement H, all parameters are in THz. The central rod is offset
vertically by 70 nm, as measured from the centers of the nanorods, and horizontally
by 85 nm from the center of the upper nanorod pair and 50 nm from the lower pair.

lower frequency, so that w, — wg, > 0. The minus sign
between the two terms in the numerator of eq 4 then
controls how the resonance frequency varies with
the coupling to the upper and lower quadrupoles.
This allows us to define a balanced condition when
Goulwg — wa) = Gw, — w,,) so that the effects of the
coupling to the quadrupoles cancel and the resonance
of the dipole antenna remains at wg = w,. If the
coupling coefficients change by a similar amount
under some perturbation, such as a horizontal transla-
tion S of the dipole antenna, then the center resonance
does not change and the spectrum is insensitive to this
motion. Alternatively, if the coupling coefficients change
in an opposite way, such as with a vertical displace-
ment H of the antenna, then the center resonance
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changes and provides a measure of this motion. When
compared with the actual frequency of the center reso-
nance for a range of coupling coefficients, the errors
arising from eq 4 are found to be less than about 0.5%.

From the previous discussion, we know that when
the loss I' is small then the resonance corresponds to
ReA(wg) =~ 0 so that A(wg) ~ ImA(wg). If we measure
the intensity of the scattering at the resonance wp,
then the amplitude depends only on |d,(wg)]* ~ AY/
(ImA(wg)?, where ImA(wg) is given by

Im A(wg) =

2 2
—(T/2) ZG‘;’ —+ 26“; —+1
(wr — wg) +T%/4 (w0 — wqu)* +T7%/4

(5)

Changes to the intensity are found by taking the deriv-
ative with respect to some parameter P, which could
represent the lateral displacement S of the antenna,
with the result

dP " ImAwR)
G/ dGa/ Gay dGﬂ“
X + 6
((wR —0ql +T/4 dP " (0g — g, +T7/4 dP ) ©

Unlike the resonance frequency, the scattering at res-
onance |dq(wg)|? is controlled by a positive sign be-
tween the two coupling terms. It has a larger change if
the two coupling coefficients vary the same way with
parameter P.

The scattering intensity at resonance and the reso-
nance frequency have been evaluated for a range of
coupling coefficients similar to those obtained from
the fits in Figure 3, with the results shown in Figure 4.
This clearly shows that the intensity and resonance
frequency of the center scattering peak depend on the

Scattering at Resonance

80 -
5
. wv
E 70 S -4
S S
o g
o 60 g
g% s ’
s
S 5
=~ 50 2 2
) o
Q
o
)
1
40
40 50 60 70 80
a) Lower coupling G, (THz)

coupling coefficients in an approximately orthogonal
manner. For example, referring to Figure 4a, if G,
changes with G, so that a particular contour is fol-
lowed, then the intensity of the scattering peak of the
central resonance does not change, whereas the res-
onance frequency does change, leading to frequency
shifts similar to those shown in Figure 3a. More gen-
erally, provided that the coupling coefficients depend
on the position of the center dipole antenna in such a
way that nonparallel contours are followed, then it
should be possible to obtain both the translation S and
the vertical displacement H independently.

These results, in part, answer the question we posed
earlier in that the variations of the coupling coefficients
are uniquely encoded in the scattering spectra. It
remains to be demonstrated how the coupling coeffi-
cients vary with the position S and H of the antenna.
This is also related to the practical situation of deter-
mining the displacement of the central nanorod from a
measurement of the scattering spectrum. This can be
done in several ways. First, eq 3 can be fitted to the
spectrum and the coupling coefficients G determined.
If we know how these coefficients depend on distance,
then the position of the central nanorod can be deter-
mined. Second, we can use the approximate forms eq 4
and eq 6 to relate the frequency and amplitude shifts of
the central resonance to the changes in the coupling
coefficients, but, again, we require some knowledge of
how these coefficients depend on position.

A mathematical expression for the dependence of
the coupling on the position of the central nanorod is
difficult to obtain. In the electrostatic formalism, the
coupling depends on the eigenfunctions associated
with the resonant modes. In this formalism, the inter-
action between the nanorods is purely Coulombic and
it is given in terms of the electric field from a surface
charge distribution o, on particle a interacting with the
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Figure 4. Dependence of (a) the scattering intensity at resonance and (b) resonance frequency wg of the central peak for a
range of coupling coefficients G, and G,,. The coefficients have values typical of the data shown in Figure 3. In these
calculations, I' =100 THz, w, = 1150 THz, wg = 1050 THz, and w4, = 1200 THz. The data were calculated by finding the peak and

its frequency from |a,(wg)|> = 1/]A|* using eq 3 for A.
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Figure 5. (a) Distribution of surface charges on the antenna
and the surface dipoles on one of the quadrupole nanorods,
calculated using an electrostatic eigenmode method. (b)
Coulomb coupling between the antenna and one of the
quadrupole nanorods as a function of distance s = S for
different heights H. The nanorods were 40 nm thick, 80 nm
wide, and 260 nm long. The solid curves were calculated
using the electrostatic eigenmode method and the dashed
curves based on eq 7 using h = H + Ho with Hy = 40 nm and
L =260 nm.
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Figure 6. Predicted changes AS and AH in the position of
the center antenna corresponding to (a) variations in S only
(Figure 3a,b) and variations in H only (Figure 3b) (see text for
details). The data points correspond to the table entries for
each coupling coefficient with the solid lines as guides for
the eye. Each dashed line represents the locus of the actual
change in the position.

surface dipole distribution 7, on particle g, as discussed
in the Methods section. That is, the eigenfunctions
represent the distributions of surface charge and
surface dipoles associated with the localized surface
plasmon modes. Examples of the surface eigenfunc-
tions are shown in Figure 5a. For the fundamental
resonance shown, the surface dipole distribution ap-
pears as a standing wave with an approximately sinu-
soidal dependence on position. Assuming that the
dominant interaction of this surface dipole distribution
is with the surface charge at one end of the upper
nanorod, we propose the following approximate form

DAVIS ET AL.

for the coupling to a nanorod of length L:

sin(zs /L)

qa‘xh(serhz +12) @)

This equation gives a reasonable fit to the position
dependence of the coupling, shown in Figure 5b, as
a function of s = S for different heights H where h =
H + H, is the center-to-center distance between the
two nanorods. The equation is more accurate when h is
small compared to L.

If we place the lower quadrupoles at position (S,—Ho)
in the x—z plane and the upper quadrupoles at position
(Su,Ho) then for both s and h much smaller than L we
would expect the coupling coefficients to vary as

S —S)

Ga ~ G I

3(Ho 1 H) ®

and

(S —Sy)

Goy = Guo——1—
au UOL3(H0 —H)

(9)
where Gy and G, are constants. Then the fractional
changes AG,/G, and AG,,/Gg, of the coupling with
small changes AS and AH are

AGay _ AS  AH

(10)

Ga S-S Ho+H
and
AGg, AS AH
~ 1
Gau S—SU+HO—H an

It is straightforward to invert eq 10 and eq 11 to write
the changes in position AS and AH in terms of the
relative changes in the coupling coefficients. If the
position S and H of the center nanorod is known
initially, then the motion of the nanorod about this
position can be inferred from the changes AG, and
AG,, obtained from the spectra. As an example, we
have used the coupling coefficients obtained from the
parameter fits to the plasmon ruler spectra in Figure 3
(see Table 1 and Table 2) to estimate the change in
position of the center nanorod. The estimates of the
distance changes are obtained relative to the center
nanorod initially at known positions (a) S = 25 nm and
H=0with §,=0,S,=—35,and Hy = 70 nm for the data
from Table 1, and (b) S = 50 nm and H = 0 with
S, =0,S,=—35,and Hy = 70 nm for the data from
Table 2. The fractional changes in the coupling coeffi-
cients are taken relative to G, and G, evaluated at
these initial points and the changes in the position of
the center nanorod are computed.

The results are compared with the known positions
in Figure 6. The predictions of the changes AS and AH
agree remarkably well with the actual changes over
the regions where the model spectra fit well to the
actual spectra. In particular, the predictions based
on Figure 3b are reasonable in the region between

D)
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H=—-10nm and H =5 nm corresponding to good fits of
the analytical model to the spectra. Outside this region,
the predictions are less accurate and our analytical
model predicts a shift in the lateral displacement S
when there should be none. This can be traced back to
the reduced accuracy in the fit of the analytical model
to the numerical data. Since the central resonance is
the main feature that encodes both S and H, it is
important that the analytical model reproduces the
frequency and strength of this resonance. From
Figure 3b, it is clear that the analytical model does
not model the central resonance very well for large
displacements—both the strength and frequency of
the central resonance change with H. This is reflected
in the results shown in Figure 6b. Note that the
predictions in Figure 6 are based on first derivatives
of the approximate expressions eq 8 and eq 9. In this
regard, it is not surprising that the predictions are in
error for large distance changes.

The important point is that we have been able to
estimate the position of the center nanorod from the
measured spectra. Key to achieving this is some knowl-
edge of the initial location of the center dipole relative
to the two quadrupole nanorod pairs. In this regard,
the quadrupoles act as reference points for the ruler.
Changes in the positions of the upper and lower
quadrupoles relative to the antenna will affect the
spectra since the couplings G,, and G, will change.
In this case, it would be impossible to distinguish
between the motion of the antenna and the motion
of the quadrupoles. These should remain fixed with
respect to one another. How this is achieved in practice

METHODS

The mathematical analysis of the three-dimensional plasmo-
nic ruler is based on an electrostatic method'*'® that describes
the Coulomb interaction between the localized surface plasm-
ons. The method gives the excitation amplitude of the an-
tenna when coupled to the other nanorods, which has the form
dq =AJ/A, where Ais given by eq 3. The transmission spectrum
has the form /. — A2/|A]%, which is fitted to the experimental
and numerical data of Liu et al.® The fitted parameters are given
in Table 1 and Table 2.

The dependence of the coupling on the position of the
central nanorod is given in the electrostatic formalism in terms
of the electric field from a surface charge distribution o, on
particle a interacting with the surface dipole distribution 7, on
particle g. The coupling G4, between the antenna a and one of
the other nanorods q takes the form

7{%7(1 — 140 a(ra)dsadsq (12)

*ral

where A is surface normal at7q on particle g. This expression is
usually evaluated numerically—an example is shown in
Figure 5b. A clue to the dependence of the coupling on the
position of the central nanorod is obtained by assuming that
the surface charge on the antenna is located predominantly at
the ends. Then the integral over the antenna surface can be
approximated by a charge located at r, = sx + hz. The surface
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depends on the means by which the plasmonic ruler
has been fabricated. Moreover, we have assumed that
the Coulomb coupling between the upper and lower
quadrupoles is small. If we take this coupling into
account in deriving eq 3, we find that the excitation
of the central dipole antenna depends on differences
Gi3 — G4 between the direct coupling G;3 and the
cross-coupling G4 and likewise for G,4 — Gy3. This par-
tial cancellation makes the ruler less sensitive to the
interactions between the upper and lower quadrupoles.

CONCLUSIONS

In conclusion, we have shown that it is possible to
model a 3D plasmonic oligomer that is used as a 3D
plasmonic ruler by an electrostatic approximation. In
particular, we derived analytical expressions that re-
present scattering intensity, resonance frequencies,
and coupling strength of spectral features of the
high-resolution plasmon-induced transparency spec-
tra. Our method proves that for small deviations there
exists a unique relationship to encode in the scattering
spectra the lateral displacement S and vertical displace-
ment H of the 3D plasmonic ruler. Using an approxima-
tion to the position dependence of the electrostatic
coupling between the nanorods, we have shown that it
is possible to estimate the position of the central
nanorod using the measured spectra. Our work has
dramatic consequences for the simplified and time-
efficient use of 3D plasmonic rulers as sensitive tools
to measure structural changes and their dynamics in
complex macromolecules, DNA scaffolds, proteins, and
other biological systems.

dipole distribution for the fundamental resonant mode appears
like a standing wave with an approximate form 74(x) = 7o sin (7zx/L),
where L is the length of the nanorod (Figure 5a). This is zero at
the center of the nanorod and maximum at the ends. Using the
normal of the nanorod surface closest to the antenna ﬁq =7Z,the
coupling is given approximately by

L2 sin(ax/L)
Gaaes 7h/ S dx (13)
12 ((x — s)*+h2?)

Despite the approximations which have been used to derive
eq 13, there is no simple solution. However, the form of the inte-
gral suggests the approximate form given in eq 7. As discussed
above, this equation gives a reasonable fit to the position
dependence of the coupling, shown in Figure 5b, as a function
of s = S for different heights H where h = H + H, is the center-
to-center distance between the two nanorods. The equation is
more accurate when h is small compared to L.
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